A Spatio-temporal Model-based Statistical Approach to Detect Evolving Multiple Sclerosis Lesions
نویسندگان
چکیده
The effects of new treatments need to be assessed: in the case of multiple sclerosis it is possible to measure those effects by studying temporal lesions’ evolutions in time series of MRI. But it is a laborious task to manually analyze such sets of images. This article proposes a new method to statistically analyze a series of T2-weighted MRI of a patient with multiple sclerosis lesions taking both temporal and spatial coherence into account. The main idea of the method is to fit a temporal parametric model of intensity evolution on each voxel of the series; these estimations give different parameter values in the case of normal and pathological areas. A statistical inference stage makes it possible to determine significant sets of connected voxels corresponding to pathological evolving areas. The significancy is estimated using permutations. Promising results show the feasibility of our approach. On our data sets the evolving lesions were detected and their temporal behavior could be quantified.
منابع مشابه
Automatic Detection and Segmentation of Evolving Processes in 3D Medical Images: Application to Multiple Sclerosis
The study of temporal series of medical images can be helpful for physicians to perform pertinent diagnoses and to help them in the follow-up of a patient: in some diseases, lesions, tumors or anatomical structures vary over time in size, position, composition, etc., either because of a natural pathological process or under the effect of a drug or a therapy. It is a laborious and subjective tas...
متن کاملSpatio-Temporal Parameters' Changes in Gait of Male Elderly Subjects
Objectives: The purpose of this study was to compare spatio-temporal gait parameters between elderly and young male subjects. Methods & Materials: 57 able-bodied elderly (72±5.5 years) and 57 healthy young (25±8.5 years) subjects participated in this study. A four segment model consist of trunk, hip, shank, and foot with 10 reflective markers were used to define lower limbs. Kinematic data c...
متن کاملContext-aware Modeling for Spatio-temporal Data Transmitted from a Wireless Body Sensor Network
Context-aware systems must be interoperable and work across different platforms at any time and in any place. Context data collected from wireless body area networks (WBAN) may be heterogeneous and imperfect, which makes their design and implementation difficult. In this research, we introduce a model which takes the dynamic nature of a context-aware system into consideration. This model is con...
متن کاملAutomated Detection of Multiple Sclerosis Lesions Using Texture-based Features and a Hybrid Classifier
Background: Multiple Sclerosis (MS) is the most frequent non-traumatic neurological disease capable of causing disability in young adults. Detection of MS lesions with magnetic resonance imaging (MRI) is the most common technique. However, manual interpretation of vast amounts of data is often tedious and error-prone. Furthermore, changes in lesions are often subtle and extremely unrepresentati...
متن کاملSTCS-GAF: Spatio-Temporal Compressive Sensing in Wireless Sensor Networks- A GAF-Based Approach
Routing and data aggregation are two important techniques for reducing communication cost of wireless sensor networks (WSNs). To minimize communication cost, routing methods can be merged with data aggregation techniques. Compressive sensing (CS) is one of the effective techniques for aggregating network data, which can reduce the cost of communication by reducing the amount of routed data to t...
متن کامل